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Abstract .  Macroscopic and microscopic effects of anharmonic lattice vibrations 
in Pd have been studied. The interatomic forces are modelled according to a p h e  
nomenological potential which includes threebody angular forces in the harmonic 
part. The cubic and quartic force constants are fitted to the experimental linear 
thermal expansion coefficient and constant-pressure specific heat, respectively. Ther- 
moelastic properties are evaluated in quasi-harmonic approximation while caloric 
properties require computation of constant-volume anharmonic contributions. The 
phonon lineshifts and linewidths have been calculated along the principal symmetry 
directions, in the framework of the second-order perturbation theory. The room- 
temperature experimental anomalies in the [<<O]Ti branch are reproduced by the 
theory. 

1. Introduction 

In this paper, I address both macroscopic and microscopic effects of the anharmonic 
interactions in Pd.  For this metal, detailed experimental investigations of lattice 
dynamics have been carried out a t  several temperatures by the use of inelastic neu- 
tron scattering techniques. Miiller and Brockhouse (1968, 1971) first pointed out 
the existence of anomalous shifts in the phonon frequencies along the [E/O]T, branch 
a t  reduced wavevectors 21 0 . 3 4 . 4 .  These anomalies have been correlated (Miiller 
1975) with possible Kohn transitions (Kohn 1959) across the ‘heavy’ hole Fermi sheet 
formed from the fifth band electrons. Associated with virtual scattering of conduc- 
tion electrons by the lattice vibrations, are real Kohn transitions which contribute 
to an increase in phonon linewidths. Such broadenings have been in fact observed 
for transverse modes by Miiller (1975) and in low-temperature longitudinal modes by 
Youngblood e t  al (1979). Pinski and Butler (1979) have attributed these experimental 
features to  an enhanced decay of phonon modes into electron-hole pairs: they have 
computed the electron-phonon matrix elements within the rigid muffin-tin approxima- 
tion and have estimated an electron-phonon coupling constant which would lead (in 
the absence of competing effects such as magnetic fluctuations) to  a superconducting 
transition temperature of 0.3 K. This theoretical model emphasizes the presence of 
many-body effects which are believed to  be strong in Pd.  

In recent years, there has been a considerable amount of work devoted to  the study 
of many-body interatomic forces in metals. In the embedded atom method (EAM) 
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(Daw and Baskes 1983), the total energy is modelled as having two contributions: the 
energy t o  embed an atom into the local electronic density provided by the remainder 
of the atoms and an electrostatic term represented by pair interactions. This approach 
has been widely used to  calculate point defects properties (Foiles et a/  1986), surface 
relaxations (Ting e l  a1 1988) and reconstructions (Ercolessi et a1 1986), surface and 
bulk phonons (Daw and Hatcher 1985) of metallic systems. Recently, the EAM has 
been successfully applied t o  compute thermal expansion and Gibbs free energy for 
the solid and liquid phases of FCC metals (Foiles and Adams 1989): the anharmonic 
effects have been included through the quasi-harmonic approximation (QHA),  since 
the phonon frequencies do depend on the lattice constant. 

In a previous paper (Zoli and Bortolani 1990), it was shown that the QHA satisfac- 
torily reproduces the thermoelastic properties of Cu and A1 throughout a wide range 
of temperatures. On the other hand, caloric properties are accurately evaluated only 
if the constant-volume anharmonic contributions are taken into account. Also the 
microscopic manifestations of anharmonicity can not be predicted in the framework 
of the QHA: both phonon linewidths and lineshifts require knowledge of the explicitly 
temperature dependent anharmonic terms which can be obtained within the constant- 
volume perturbative theory. In particular, by evaluating the lowest-order diagrams 
in the phonon self-energy, we have been able to  reproduce some anomalous dampings 
(Zoli e t  a1 1990) and lineshifts (Zoli 1990) of phonon modes which are observed in cop- 
per and aluminum. Although our theoretical approach attributes to  phonon-phonon 
scattering the major role for such anomalies, we have also taken into account the 
electron-phonon contribution by using a phenomenological potential with unknown 
parameters fitted to  experimental quantities. In particular, the third- and fourth-order 
derivatives of the interatomic potential have been related to  the experimentally known 
higher-order elastic constants (HOEC). 

In the case of Pd  such an approach can not be adopted, since experimental informa- 
tion on the HOEC are, to  my knowledge, not available. Alternatively, the experimental 
thermal expansion and the constant-pressure specific heat can be used to  sample the 
range of the anharmonic potential. 

This paper is organized as follows. In section 2, the harmonic model potential is 
briefly reviewed. In section 3, the thermoelastic and caloric properties are evaluated 
on the base of the low-order perturbation theory. The volume dependence of the 
Helmholtz free energy is taken into account. The values of the cubic and quartic 
force constants are fitted to  the experimental linear thermal expansion coefficient and 
constant-pressure specific heat, respectively. In section 4, the lineshifts and linewidths 
of transverse and longitudinal phonons are computed along t,wo symmetry directions 
of the Brillouin zone. The results are discussed in connection with the available 
experiment a1 data.  

2. The harmonic model potential 

In calculations of macroscopic and microscopic anharmonic properties, the phonon fre- 
quencies and polarisation vectors are assumed to be known. Therefore, it is understood 
that reliable estimates of anharmonic effects can be carried out once the harmonic part 
of the potential is built with high accuracy. I have used a force constant harmonic 
model potential which includes two-body forces up t o  the sixth-neighbour shell and 
three-body angular forces restricted to  terns of first-neighbour atoms. The harmonic 
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force constants are determined by a least squares fit to the observed room-temperature 
phonon frequencies in the high symmetry directions of the Brillouin zone (Miiller and 
Brockhouse 1971). The range of the two-body harmonic potential is chosen as the 
one that gives the minimum between the theoretical and the experimental dispersion 
relations. The experimental second-order elastic constants (SOEC) are also taken into 
account with an high fitting weight. The relations between SOEC and harmonic force 
constants are 

where i labels the ith-neighbour shell, 4 ( r i )  is the pairwise potential and W(cosBJKL) 
is the three-body potential, in which JKL labels the tern of atoms. Since we consider 
first-neighbour angular forces, it follows that (i) J and L are nearest neighbours of K;  
(ii) J and L have to be nearest neighbours of each other. 

Table 1. Harmonic and anharmonic force constants values for Pd in units of 
10" dyn cmV2; a is the lattice constant. 

1.2923 -0.0562 0.0276 0.0455 -0.0346 0.0069 -0.0058 

Yl - y2 Q3 Qz Q i  Y3 
a a a a a a 

- - - I - 

-10.52 1.93 -1.37 99.41 3.18 -1.76 

Table 1 lists the force constant values, as derived from the fitting procedure. The 
value of 6, allows one to reproduce the experimental violation of the second-order 
Cauchy relations to within 3%. Accordingly, many-body effects are well described 
by the harmonic model potential. The phonon dispersion relations along the high 
symmetry directions of the Brillouin zone are shown in figure 1, together with the 
experimental data. The long-range interactions are essential in accounting for the 
large Friedel oscillations of the potential. No substantial improvement occurs in the 
fit by extending the range beyond the sixth-neighbour shell. 

3. Thermoelastic and caloric properties 

The thermoelastic properties of metals depend sensitively on the effective range of the 
anharmonic potential. The vibrating atoms sample, in their temperature dependent 
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Figure 1. Phonon dispersion relations in Pd, along the symmetry directions of the 
Brillouin zone. + denotes the room-temperature experimental values (Miiller and 
Brockhouse 1971). 

displacements, regions whose extension is related to the crystal equilibrium volume. 
Therefore, the volume dependence of the Helmholtz free energy should be fully taken 
into account in order to reproduce experiments. 

The effects of strain on the atomic mean positions can be introduced in the crystal 
Hamiltonian by writing the phonon displacement fields as a superposition of micro- 
scopic vibrations inside the unit cell and macroscopic deformations of the cell itself 
(Barron and Klein 1974). This approach allows one to  obtain a perturbative term 
F,(V,T) in the Helmholtz free energy as a function of the strain Hamiltonian H ,  

with 

where 4 is the inverse temperature, (.. .)O,conn denotes that quantum averages are 
made on the unperturbed (harmonic) eigenstates of the crystal Hamiltonian and only 
connected diagrams may be retained. Thermal averages are implied by the formalism. 

The full set of equations which relate H ,  to the anharmonic force constant tensors 
is given by Zoli and Bortolani (1990). Here, I only point out that to lowest order H ,  
is quadratic in the normal coordinates expansion. Therefore, the constant-volume an- 
harmonic Hamiltonian (Ifanh), which consists of cubic and quartic terms in the normal 
coordinates, can be reasonably neglected in (4) and the use of the QHA is justified. 
In this view, the thermoelastic properties represent the anharmonic crystal response 
to perturbations induced by homogeneous deformations. Explicit expressions of lin- 
ear thermal expansion coefficient cr(T), isothermal bulk modulus BT(T) and mode 
Griineisen parameters y ( q j ) ,  as functions of the cubic anharmonic force constants 
are given elsewhere (Zoli 1990). Zoli and Bortolani (1990), have also shown that the 
quartic anharmonic force constants scarcely affect thermoelastic properties of metallic 
systems. 
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Figure 2. Linear thermal expansion coefficient vemus temperature in Pd. 0, t h e e  
retical values; 0, experimental values (Touloukian e t  al 1970). 
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Figure 3. Isothermal bulk modulus versus temperature in Pd. 0, theoretical values; 
0, experimental values (Landolt-Barnstein 1984). 

I have determined the third-order derivatives of the pair potential in Pd ,  by fitting 
the experimental a(T)  a t  three selected temperatures (T = 100,300,800 K). Although 
the high-temperature data  could be well reproduced by a first-neighbour ranged cu- 
bic potential, the extension of the anharmonic interactions to  third-neighbour atoms 
improves considerably the fitting in the low-temperature region. The values obtained 
for the three cubic force constants (q = vi#”’(r i )  i = 1 ,2 ,3 )  are reported in table 1. 
These values have been used to  calculate the temperature dependent B T ( T )  and the 
thermodynamic Griineisen parameter ytd. The resulting curves for a(T)  and B T ( T )  
are presented in figures 2 and 3, respectively, together with experimental data.  In 
table 2, some computed values of ytd and of the temperature derivative of the bulk 
modulus are reported. The fair agreement between theory and experiment proves 
that  the QHA deals satisfactorily with thermal dilation effects in Pd. The higher-order 
terms (related t o  Hanh) yield contributions to  the thermoelastic properties which are 
smaller by three orders of magnitude up to  the melting temperature (T,). 

It should be noted that in alkali-halide (AH) and rare-gas (RG) solids, the higher- 
order corrections are relevant even a t  temperatures T 21 iT ,  (Glyde and Klein 1971). 
Such a different behaviour can be attributed to  the fact that  the interatomic potentials 
in AH and RG solids have much steeper repulsive cores than potentials in metals. As a 
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Table 2. Calculated thermodynamic Griineisen parameter ^(Id, experimental value 
of 7 t d  (Gschneider 1964), calculated temperature derivative of the isothermal bulk 
modulus dBT(T)/dT in units of lo7 N m-2 K-l  . Zero-pressure experimental values 
of dB* (T)/dT (Weinmann and Steinemann 1974). Computed values of the constanb 
volume anharmonic specific heat in units of J K-’ mol-]. 

CVh 
dBT(T) 

dT P=O 

100 2.20 -2.84 
295 2.23 2 . 2 8 f  0.1 -2.87 -2.51 
800 2.24 -2.88 -2.55 

1400 2.24 -2.88 

0.09 
0.69 
1.33 
1.36 

I l--l 

Temperature (K) 
200 400 600 800 1000 

5 1  
0 

Figure 4. Constant pressure specific heat versus temperature in Pd. 0 ,  theoretical 
values for C p ;  U. theoretical values for (Cb). Experimental data for C p :  0,  Clusius 
and Schachinger (1947); 0, Touloukian et a /  (1970). 

consequence, the nth-order ( n  2 3) derivatives of the potential are much larger in AH 
and RG solids than in metals and, in the former systems, the QHA fails to  determine 
the effective temperature dependence of the phonon frequencies. 

With regard to  caloric properties, the directly measured quantity is the constant- 
pressure specific heat C,(T), whose explicit expression is 

C,(T) = C k ( T )  + CYh(T) + STVd(T)BT(T)  ( 5 )  

where V is the crystal volume in the undeformed state, C; and Cyh are the constant- 
volume harmonic and anharmonic specific heat, respectively. According to (5), accu- 
rate predictions for C, can not be carried out within the QHA,  since Cyh is directly 
related to  the cubic and quartic terms in Ifanh. Moreover, the quartic anharmonic 
term contributes to  the first perturbative order in the S-matrix expansion and there- 
fore its effect has to be taken into account. I have used the measured C,(T) a t  
T = 800 K to derive the value of the fourth-order derivative of the pair potential in 
Pd.  By extending the range of the quartic anharmonic potential beyond the first- 
neighbour shell, the leading fourth-order force constant does not undergo substantial 
modifications. The values of the quartic force constants (Qi = r:4””(ri) i = 1 , 2 , 3 )  
are listed in table 1. Theoretical and experimental Cp(T)  versus temperature are 
reported in figure 4. The harmonic contribution is also separately shown to emphasize 
effects of anharmonicities above room temperature. Some computed values of Cyh 
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are presented in table 2 .  Unlike noble metals (Martin 1937, R o s h  and Grimvall 1983) 
and aluminum (Leadbetter 1968), CFh is positive in Pd. This result would suggest 
that  a decreasing Debye temperature as a function of T ,  has also to  be expected for 
this metal below room temperature. 

4. Phonon lineshifts and linewidths 

Due to anharmonicity the frequencies w ( q j )  of phonons, with wavevector q and mode 
index j, are volume and temperature dependent. To lowest order in perturbation 
theory the harmonic frequencies wo shift to  

w(qj . j> = w o ( q j )  + 

AT ( q j )  = A(’)( q j )  + A(3)( q j )  + A(4)( q j ) .  (6) 

Aco)(qj) = -3a(T)T’Y(qj)wo(qj), (7) 

with 

The dilation effects are provided by A(’)(qj)  which can be written as 

The terms A(4)(qj) and A(3)(qj) are the lowest-order contribution in the real part of 
the phonon self-energy. Their analytic expressions are 

(8) n1 - 722 - 121-  n2 + 
w o ( q j )  - wo(1) + wo(2) wo(q3J + wo(1) - w o ( 2 )  

where PP denotes the principal value, w o ( i  3 w o ( q i j i ) ,  ni 3 n(wo(i)) are the Bose- 

and fourth-order force constant tensors , respectively. The harmonic and anharmonic 
force constants of Pd ,  as determined in the previous sections, have been used here. 
As a consequence of translational invariance, the sums over two Brillouin zones in the 
second expression of (8) are reduced to  a sum over ql ,  with q2 = q - q1 + G (G 
is a reciprocal lattice vector). Numerical convergence in the third decimal place is 
achieved by using 8704 points in the entire Brillouin zone. The principal value has 
been represented by 

Einstein statistical factors and V ( 3 )  and V l 4 )  are the Fourier transforms of the third- 

(9) 

with E small but finite. A(3)(qj) results practically independent of E over a range 
of values of E ,  The value ( E  = 0.18 meV) that lies in the centre of such a range 
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has therefore been chosen. The terms in (7) and (8) have been computed at room 
temperature, with the wavevector q lying along the symmetry directions [ loo]  and 
[ E E O ] .  In tables 3 and 4 ,  the results are presented for transverse and longitudinal 
phonons, respectively. The agreement with the room-temperature experimental data, 
which are available for transverse (T,) phonons, is satisfactory. The theory reproduces 
the enhanced softening of the transverse mode in the small q region, along the [<EO] 
direction. Concerning the longitudinal phonons, the lineshifts are predicted to be 
peaked around the zone boundaries. Unlike the noble metals, the dilation term scarcely 
contribute to  soften the phonon spectrum of Pd, whereas the cubic term A(3)(q j )  
provides the relevant effects. 

Table 3. Lineshifts of transverse phonons in Pd. The shifts are in u n i t s  of meV. 
The wavevectors are in units of 27rla. A(O) is evaluated from (8); A(') and A(3) 
are evaluated from (9); AT,  defined in (7), is calculated at  room temperature. The 
experimental data are taken from Miiller (1975). Along the [<EO] direction the data 
refer to the TI branch. 

Wavevector q 

0.2 0.0 0.0 
0.4 0.0 0.0 
0.6 0.0 0.0 
0.8 0.0 0.0 
1.0 0.0 0.0 

0.15 0.15 0.0 
0.30 0.30 0.0 
0.45 0.45 0.0 
0.60 0.60 0.0 
0.75 0.75 0.0 

AexP 
AT T 

-0.119 
-0.219 
-0.291 
-0.337 
-0.354 

0.031 
0.046 
0.039 
0.016 
0.011 

-0.018 
-0.033 
-0.044 
-0.051 
-0.053 

-0.017 
-0.031 
-0.041 
-0.048 
-0.052 

-0.548 
-0.382 
-0.551 
-0.989 
-0.95 

-0.252 
-0.992 
-0.671 
-0.622 
-0.561 

-0.685 
-0.634 
-0.886 
-1.377 
-1.357 

-0.238 -0.175 
-0.978 -0.910 
-0.673 -0.512 
-0.654 
-0.602 

Table 4. Lineshifts of longitudinal phonons in Pd. Symbols as defined in table 3. 

Wavevector q A(') A(4) A(3) AT 

0.2 0.0 0.0 
0.4 0.0 0.0 
0.6 0.0 0.0 
0.8 0.0 0.0 
1.0 0.0 0.0 

0.15 0.15 0.0 
0.30 0.30 0.0 
0.45 0.45 0.0 
0.60 0.60 0.0 
0.75 0.75 0.0 

-0.047 
-0.091 
-0.127 
-0.150 
-0.158 

-0.063 
-0.112 
-0.137 
-0.132 
-0.134 

-0.019 
-0.037 
-0.052 
-0.061 
-0.064 

-0.015 
-0.028 
-0.040 
-0.047 
-0.062 

-0.413 
-0.663 
-0.956 
-1.750 
- 1.431 

-0.541 
-0.575 
-1.222 
-2.070 
- 1.989 

-0.478 
-0.791 
-1.135 
-1.961 
- 1.653 

-0.619 
-0.715 
-1.399 
-2.249 
-2.185 

The phonon linewidths r(qj) may be obtained by applying the Kramers-Kronig 
relation to  the second expression of (8). However, a better numerical convergence is 
obtained by computing directly the explicit formula as given in second-order pertur- 
bation theory 
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As noted above, the double sums are reduced t o  a sum over q1 because of translational 
invariance. The &functions have been represented as follows: 

with 

For a fixed point (ql,z,ql,y) the argument of the &function depends on the one- 
dimensional variable Q ~ , ~  = 2. In ( l l ) ,  the sum over the zeroes z,, which ensure 
energy conservation in the three phonon scattering processes, ranges from 1 to  4 for 
a given point (ql,z,ql,y). Therefore, by using 3104 points in the plane (z,y), I can 
sample around 10000 points in the entire Brillouin zone. Umklapp processes have to  
be taken into account since their number is comparable to  the number of normal pro- 
cesses. The derivatives of f l ( z )  never vanish at  the zeroes I, so that  focussing effects 
are not present in the bulk of Pd. In table 5 ,  the computed linewidths of longitudinal 
and transverse phonons are reported together with the available room-temperature 
experimental data  along the [[[OIT, branch. The calculated linewidths of transverse 
phonons are in fair agreement with the measured values. Similarly to  A1 and Au, an 
enhanced decay process for the (0.8 0.0 0.0) longitudinal mode is also found in Pd.  
However, only low-temperature (4 .6 K) measurements are available for longitudinal 
phonons along the [ [OO]  direction. According t o  this data,  the maximum width is 
observed a t  [ = 0.4.  

Table 5. Room temperature linewidths for Pd in units of meV. Along the [ ( (O]  
direction the data refer to the T1 branch. The experimental data are taken from 
Miiller (1975). 

Wavevector q Longitudinal Transverse 2rexP 

0.2 0.0 0.0 0.154 0.094 
0.4 0.0 0.0 0.519 0.236 
0.6 0.0 0.0 1.155 0.694 
0.8 0.0 0.0 1.871 0.853 
1.0 0.0 0.0 1.740 0.801 

0.15 0.15 0.0 0.382 0.187 
0.30 0.30 0.0 0.666 0.653 0.745 
0.45 0.45 0.0 1.297 0.803 0.830 
0.60 0.60 0.0 1.327 0.558 0.620 
0.75 0.75 0.0 1.073 0.532 
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At room temperature the phonon-phonon scattering should provide the predom- 
inant contribution t o  the decay rate while at low temperatures the electron-phonon 
scattering should play a relevant role (Youngblood e2 a1 1979). Moreover, the for- 
mer mechanism should determine the linewidths for large momenta q while the latter 
should be dominant for small momenta. Since the linewidths of longitudinal phonons 
are strongly q dependent along the [E001 direction, it would be worthwhile to  obtain 
experimental information concerning this q dependence as a function of temperature. 
This research may greatly help to  quantify the effects of the different sources of scat- 
tering on the anharmonic properties of FCC metals. 
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